Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2322924121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38607933

RESUMO

Many Mendelian disorders, such as Huntington's disease (HD) and spinocerebellar ataxias, arise from expansions of CAG trinucleotide repeats. Despite the clear genetic causes, additional genetic factors may influence the rate of those monogenic disorders. Notably, genome-wide association studies discovered somewhat expected modifiers, particularly mismatch repair genes involved in the CAG repeat instability, impacting age at onset of HD. Strikingly, FAN1, previously unrelated to repeat instability, produced the strongest HD modification signals. Diverse FAN1 haplotypes independently modify HD, with rare genetic variants diminishing DNA binding or nuclease activity of the FAN1 protein, hastening HD onset. However, the mechanism behind the frequent and the most significant onset-delaying FAN1 haplotype lacking missense variations has remained elusive. Here, we illustrated that a microRNA acting on 3'-UTR (untranslated region) SNP rs3512, rather than transcriptional regulation, is responsible for the significant FAN1 expression quantitative trait loci signal and allelic imbalance in FAN1 messenger ribonucleic acid (mRNA), accounting for the most significant and frequent onset-delaying modifier haplotype in HD. Specifically, miR-124-3p selectively targets the reference allele at rs3512, diminishing the stability of FAN1 mRNA harboring that allele and consequently reducing its levels. Subsequent validation analyses, including the use of antagomir and 3'-UTR reporter vectors with swapped alleles, confirmed the specificity of miR-124-3p at rs3512. Together, these findings indicate that the alternative allele at rs3512 renders the FAN1 mRNA less susceptible to miR-124-3p-mediated posttranscriptional regulation, resulting in increased FAN1 levels and a subsequent delay in HD onset by mitigating CAG repeat instability.


Assuntos
Doença de Huntington , MicroRNAs , Humanos , Regiões 3' não Traduzidas/genética , Endodesoxirribonucleases , Exodesoxirribonucleases/genética , Estudo de Associação Genômica Ampla , Doença de Huntington/genética , MicroRNAs/genética , Enzimas Multifuncionais
2.
Brain Commun ; 6(2): fcae016, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449714

RESUMO

Expansions of glutamine-coding CAG trinucleotide repeats cause a number of neurodegenerative diseases, including Huntington's disease and several of spinocerebellar ataxias. In general, age-at-onset of the polyglutamine diseases is inversely correlated with the size of the respective inherited expanded CAG repeat. Expanded CAG repeats are also somatically unstable in certain tissues, and age-at-onset of Huntington's disease corrected for individual HTT CAG repeat length (i.e. residual age-at-onset), is modified by repeat instability-related DNA maintenance/repair genes as demonstrated by recent genome-wide association studies. Modification of one polyglutamine disease (e.g. Huntington's disease) by the repeat length of another (e.g. ATXN3, CAG expansions in which cause spinocerebellar ataxia 3) has also been hypothesized. Consequently, we determined whether age-at-onset in Huntington's disease is modified by the CAG repeats of other polyglutamine disease genes. We found that the CAG measured repeat sizes of other polyglutamine disease genes that were polymorphic in Huntington's disease participants but did not influence Huntington's disease age-at-onset. Additional analysis focusing specifically on ATXN3 in a larger sample set (n = 1388) confirmed the lack of association between Huntington's disease residual age-at-onset and ATXN3 CAG repeat length. Additionally, neither our Huntington's disease onset modifier genome-wide association studies single nucleotide polymorphism data nor imputed short tandem repeat data supported the involvement of other polyglutamine disease genes in modifying Huntington's disease. By contrast, our genome-wide association studies based on imputed short tandem repeats revealed significant modification signals for other genomic regions. Together, our short tandem repeat genome-wide association studies show that modification of Huntington's disease is associated with short tandem repeats that do not involve other polyglutamine disease-causing genes, refining the landscape of Huntington's disease modification and highlighting the importance of rigorous data analysis, especially in genetic studies testing candidate modifiers.

3.
Sci Rep ; 13(1): 13753, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612316

RESUMO

We aimed to investigate whether mitochondrial dysfunction in extracellular cerebrospinal fluid (CSF), which is associated with autophagy and mitophagy, might be involved in neurological outcomes in adult patients with hemorrhagic moyamoya disease (MMD) whose pathogenesis related to poor outcomes is not well-known. CSF samples were collected from 43 adult MMD patients and analyzed according to outcomes at 3 months. Fluorescence-activated cell sorter analysis (FACS) and the JC-1 red/green ratio were used to assess mitochondrial cells and intact mitochondrial membrane potential (MMP). We performed quantitative real-time polymerase chain reaction and Western blotting analyses of autophagy and mitophagy-related markers, including HIF1α, ATG5, pBECN1, BECN1, BAX, BNIP3L, DAPK1, and PINK1. Finally, FACS analysis with specific fluorescence-conjugated antibodies was performed to evaluate the potential cellular origin of CSF mitochondrial cells. Twenty-seven females (62.8%) with a mean age of 47.4 ± 9.7 years were included in the study. Among 43 patients with hemorrhagic MMD, 23 (53.5%) had poor outcomes. The difference in MMP was evident between the two groups (2.4 ± 0.2 in patients with poor outcome vs. 3.5 ± 0.4 in patients with good outcome; p = 0.02). A significantly higher expression (2-ΔCt) of HIF1α, ATG5, DAPK1 followed by BAX and BNIP3L mRNA and protein was also observed in poor-outcome patients compared to those with good outcomes. Higher percentage of vWF-positive mitochondria, suggesting endothelial cell origins, was observed in patients with good outcome compared with those with poor outcome (25.0 ± 1.4% in patients with good outcome vs. 17.5 ± 1.5% in those with poor outcome; p < 0.01). We observed the association between increased mitochondrial dysfunction concomitant with autophagy and mitophagy in CSF cells and neurological outcomes in adult patients with hemorrhagic MMD. Further prospective multicenter studies are needed to determine whether it has a diagnostic value for risk prediction.


Assuntos
Mitofagia , Doença de Moyamoya , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Anticorpos , Autofagia , Proteína X Associada a bcl-2 , Mitocôndrias , Masculino
4.
Acta Neurochir (Wien) ; 165(8): 2201-2210, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37380907

RESUMO

BACKGROUND: We aimed to investigate the effects of oxiracetam on cognitive impairment in the early phase of traumatic brain injury (TBI), for which no specific treatment is currently available. METHODS: The in vitro study used a cell injury controller to damage SH-SY5Y cells and evaluate the effect of oxiracetam at a dosage of 100 nM. The in vivo study used a stereotaxic impactor to induce a TBI model in C57BL/6 J mice and analyzed immunohistochemical changes and cognitive function after an intraperitoneal injection of oxiracetam (30 mg/kg/day) for 5 days. The number of mice used in this study was 60. They were divided into three groups (sham, TBI, and TBI with oxiracetam treatment) (20 mice in each group). RESULTS: The in vitro study showed that oxiracetam treatment resulted in increased superoxide dismutase (SOD)1 and SOD2 mRNA expression. The mRNA and protein expression of COX-2, NLRP3, caspase-1, and interleukin (IL)-1 ß were decreased after oxiracetam treatment, along with decreases in intracellular reactive oxygen species production and apoptotic effects. TBI mice treated with oxiracetam exhibited the loss of fewer cortical damaged lesions, less brain edema, and fewer Fluoro-Jade B (FJB)-positive and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL)-positive cells compared to those without oxiracetam treatment. The mRNA and protein expression of COX-2, NLRP3, caspase-1, and IL-1ß were decreased significantly after oxiracetam treatment. These inflammation-related markers, which colocalized with Iba-1-positive or GFAP-positive cells after TBI, were also decreased after oxiracetam treatment. TBI mice treated with oxiracetam had a smaller decrease in preference and more latency time than those not treated with oxiracetam, suggesting the amelioration of impaired cognitive impairment. CONCLUSIONS: Oxiracetam may be helpful in restoring cognitive impairment by ameliorating neuroinflammation in the early phase of TBI.


Assuntos
Lesões Encefálicas Traumáticas , Disfunção Cognitiva , Neuroblastoma , Ratos , Camundongos , Humanos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos Sprague-Dawley , Ciclo-Oxigenase 2 , Camundongos Endogâmicos C57BL , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Anti-Inflamatórios/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/uso terapêutico , Caspases/uso terapêutico , Modelos Animais de Doenças
5.
Acta Biomater ; 167: 335-347, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37356785

RESUMO

OBJECTIVE: There are no effective clinically applicable treatments for neuronal dysfunction after mild traumatic brain injury (TBI). Here, we evaluated the therapeutic effect of a new delivery method of mouse neural stem cell (mNSC) spheroids using a hydrogel, in terms of improvement in damaged cortical lesions and cognitive impairment after mild TBI. METHODS: mNSCs were isolated from the subventricular zone and subgranular zone by a hydrogel-based culture system. GFP-transduced mNSCs were generated into spheroids and wrapped into a sheet for transplantation. Male C57BL/6J mice were randomly divided into four groups: sham operation, TBI, TBI with mNSC spheroids, and TBI with mNSC spheroid sheet transplantation covering the damaged cortex. Histopathological and immunohistochemical features and cognitive function were evaluated 7, 14, and 28 days after transplantation following TBI. RESULTS: Hydrogel-based culture systems and mNSC isolation were successfully established from the adult mice. Essential transcription factors for NSCs, such as SOX2, PAX6, Olig2, nestin, and doublecortin (DCX), were highly expressed in the mNSCs. A transplanted hydrogel-based mNSC spheroid sheet showed good engraftment and survival ability, differentiated into TUJ1-positive neurons, promoted angiogenesis, and reduced neuronal degeneration. Also, TBI mice treated with mNSC spheroid sheet transplantation exhibited a significantly increased preference for a new object, suggesting improved cognitive function compared to the mNSC spheroids or no treatment groups. CONCLUSION: Transplantation with a hydrogel-based mNSC spheroid sheet showed engraftment, migration, and stability of delivered cells in a hostile microenvironment after TBI, resulting in improved cognitive function via reconstruction of the damaged cortex. STATEMENT OF SIGNIFICANCE: This study presents the therapeutic effect of a new delivery method of mouse neural stem cells spheroids using a hydrogel, in terms of improvement in damaged cortical lesions and cognitive impairment after traumatic brain injury. Collagen/fibrin hydrogel allowed long-term survival and migratory ability of NSCs spheroids. Furthermore, transplanted hydrogel-based mNSCs spheroids sheet showed good engraftment, migration, and stability of delivered cells in a hostile microenvironment, resulting in reconstruction of the damaged cortex and improved cognitive function after TBI. Therefore, we suggest that a hydrogel-based mNSCs spheroids sheet could help to improve cognitive impairment after TBI.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Células-Tronco Neurais , Masculino , Camundongos , Animais , Concussão Encefálica/patologia , Hidrogéis/farmacologia , Camundongos Endogâmicos C57BL , Neurônios , Lesões Encefálicas Traumáticas/patologia
6.
J Hum Genet ; 68(10): 713-720, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37365321

RESUMO

Genome-wide association study has limited to discover single-nucleotide polymorphisms (SNPs) in several ethnicities. Here, we investigated an initial GWAS to identify genetic modifiers predicting with adult moyamoya disease (MMD) in Koreans. GWAS was performed in 216 patients with MMD and 296 controls using the large-scale Asian-specific Axiom Precision Medicine Research Array. A subsequent fine-mapping analysis was conducted to assess the causal variants associated with adult MMD. A total of 489,966 out of 802,688 SNPs were subjected to quality control analysis. Twenty-one SNPs reached a genome-wide significance threshold (p = 5 × 10-8) after pruning linkage disequilibrium (r2 < 0.8) and mis-clustered SNPs. Among these variants, the 17q25.3 region including TBC1D16, CCDC40, GAA, RNF213, and ENDOV genes was broadly associated with MMD (p = 3.1 × 10-20 to 4.2 × 10-8). Mutations in RNF213 including rs8082521 (Q1133K), rs10782008 (V1195M), rs9913636 (E1272Q), rs8074015 (D1331G), and rs9674961 (S2334N) showed a genome-wide significance (1.9 × 10-8 < p < 4.3 × 10-12) and were also replicated in the East-Asian populations. In subsequent analysis, RNF213 mutations were validated in a fine-mapping outcome (log10BF > 7). Most of the loci associated with MMD including 17q25.3 regions were detected with a statistical power greater than 80%. This study identifies several novel and known variations predicting adult MMD in Koreans. These findings may good biomarkers to evaluate MMD susceptibility and its clinical outcomes.


Assuntos
Doença de Moyamoya , Humanos , Adulto , Doença de Moyamoya/genética , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Adenosina Trifosfatases/genética
7.
bioRxiv ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37162872

RESUMO

An expanded CAG repeat in the huntingtin gene ( HTT ) causes Huntington's disease (HD). Since the length of uninterrupted CAG repeat, not polyglutamine, determines the age-at-onset in HD, base editing strategies to convert CAG to CAA are anticipated to delay onset by shortening the uninterrupted CAG repeat. Here, we developed base editing strategies to convert CAG in the repeat to CAA and determined their molecular outcomes and effects on relevant disease phenotypes. Base editing strategies employing combinations of cytosine base editors and gRNAs efficiently converted CAG to CAA at various sites in the CAG repeat without generating significant indels, off-target edits, or transcriptome alterations, demonstrating their feasibility and specificity. Candidate BE strategies converted CAG to CAA on both expanded and non-expanded CAG repeats without altering HTT mRNA and protein levels. In addition, somatic CAG repeat expansion, which is the major disease driver in HD, was significantly decreased by a candidate BE strategy treatment in HD knock-in mice carrying canonical CAG repeats. Notably, CAG repeat expansion was abolished entirely in HD knock-in mice carrying CAA-interrupted repeats, supporting the therapeutic potential of CAG-to-CAA conversion base editing strategies in HD and potentially other repeat expansion disorders.

8.
J Korean Neurosurg Soc ; 66(5): 525-535, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37068789

RESUMO

OBJECTIVE: We performed an expanded multi-ethnic meta-analysis to identify associations between inflammation-related loci with intracranial aneurysm (IA) susceptibility. This meta-analysis possesses increased statistical power as it is based on the most data ever evaluated. METHODS: We searched and reviewed relevant literature through electronic search engines up to August 2022. Overall estimates were calculated under the fixed- or random-effect models using pooled odds ratio (OR) and 95% confidence intervals (CIs). Subgroup analyses were performed according to ethnicity. RESULTS: Our meta-analysis enrolled 15 studies and involved 3070 patients and 5528 controls including European, Asian, Hispanic, and mixed ethnic populations. Of 17 inflammation-related variants, the rs1800796 locus (interleukin [IL]-6) showed the most significant genome-wide association with IA in East-Asian populations, including 1276 IA patients and 1322 controls (OR, 0.65; 95% CI, 0.56-0.75; p=3.24×10-9) under a fixed-effect model. However, this association was not observed in the European population (OR, 1.09; 95% CI, 0.80-1.47; p=0.5929). Three other variants, rs16944 (IL-1ß), rs2195940 (IL-12B), and rs1800629 (tumor necrosis factor-α) showed a statistically nominal association with IA in both the overall, as well as East-Asian populations (0.01

10.
J Korean Neurosurg Soc ; 66(4): 409-417, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36274247

RESUMO

OBJECTIVE: The association between boule (BOLL) and endothelin receptor type A (EDNRA) loci and intracranial aneurysm (IA) formation has been reported via genome-wide association studies. We sought to identify genome-wide interactions involving BOLL and EDNRA loci for IA in a Korean adult cohort. METHODS: Genome-wide pairwise interaction analyses of BOLL and EDNRA involving 250 patients with IA and 296 controls were performed using the additive effect model after adjusting for confounding factors. RESULTS: Among 512575 single-nucleotide polymorphisms (SNPs), 23 and 11 common SNPs suggested a genome-wide interaction threshold (p<1.25×10-8) involving rs700651 (BOLL) and rs6841581 (EDNRA). Rather than singe SNP effect of BOLL or EDNRA on IA development, they showed a synergistic effect on IA formation via multifactorial pair-wise interactions. The rs1105980 of PTCH1 gene showed the most significant interaction with rs700651 (natural log-transformed odds ratio [lnOR], 1.53; p=6.41×10-11). The rs74585958 of RYK gene interacted strongly with rs6841581 (lnOR, -19.91; p=1.64×10-9). Although, there was no direct interaction between BOLL and EDNRA variants, two EDNRA-interacting gene variants of TNIK (rs11925024 and rs1231) and FTO (rs9302654), and one BOLL-interacting METTL4 gene variant (rs549315) exhibited marginal interaction with BOLL gene. CONCLUSION: BOLL or EDNRA may have a synergistic effect on IA formation via multifactorial pair-wise interactions.

11.
Transl Stroke Res ; 14(5): 681-687, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36264420

RESUMO

Candidate gene studies have identified genetic variants associated with clinical outcomes following aneurysmal subarachnoid haemorrhage (aSAH), but no genome-wide association studies have been performed to date. Here we report the results of the discovery phase of a two-stage genome-wide meta-analysis of outcome after aSAH. We identified 157 independent loci harbouring 756 genetic variants associated with outcome after aSAH (p < 1 × 10-4), which require validation. A single variant (rs12949158), in SPNS2, achieved genome-wide significance (p = 4.29 × 10-8) implicating sphingosine-1-phosphate signalling in outcome after aSAH. A large multicentre international effort to recruit samples for validation is required and ongoing. Validation of these findings will provide significant insight into the pathophysiology of outcomes after aSAH with potential implications for treatment.


Assuntos
Hemorragia Subaracnóidea , Humanos , Hemorragia Subaracnóidea/complicações , Estudo de Associação Genômica Ampla , Estudos Longitudinais , Resultado do Tratamento
12.
Mol Ther Methods Clin Dev ; 26: 547-561, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36092363

RESUMO

Huntington's disease (HD) is caused by an expanded CAG repeat in huntingtin (HTT). Since HD is dominant and loss of HTT leads to neurological abnormalities, safe therapeutic strategies require selective inactivation of mutant HTT. Previously, we proposed a concept of CRISPR-Cas9 using mutant-specific PAM sites generated by SNPs to selectively inactivate mutant HTT. Aiming at revealing suitable targets for clinical development, we analyzed the largest HD genotype dataset to identify target PAM-altering SNPs (PAS) and subsequently evaluated their allele specificities. The gRNAs based on the PAM sites generated by rs2857935, rs16843804, and rs16843836 showed high levels of allele specificity in patient-derived cells. Simultaneous use of two gRNAs based on rs2857935-rs16843804 or rs2857935-rs16843836 produced selective genomic deletions in mutant HTT and prevented the transcription of mutant HTT mRNA without impacting the expression of normal counterpart or re-integration of the excised fragment elsewhere in the genome. RNA-seq and off-target analysis confirmed high levels of allele specificity and the lack of recurrent off-targeting. Approximately 60% of HD subjects are eligible for mutant-specific CRISPR-Cas9 strategies of targeting one of these three PAS in conjunction with one non-allele-specific site, supporting high applicability of PAS-based allele-specific CRISPR approaches in the HD patient population.

13.
JCI Insight ; 7(19)2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36040815

RESUMO

Dominant gain-of-function mechanisms in Huntington's disease (HD) suggest that selective silencing of mutant HTT produces robust therapeutic benefits. Here, capitalizing on exonic protospacer adjacent motif-altering (PAM-altering) SNP (PAS), we developed an allele-specific CRISPR/Cas9 strategy to permanently inactivate mutant HTT through nonsense-mediated decay (NMD). Comprehensive sequence/haplotype analysis identified SNP-generated NGG PAM sites on exons of common HTT haplotypes in HD subjects, revealing a clinically relevant PAS-based mutant-specific CRISPR/Cas9 strategy. Alternative allele of rs363099 (29th exon) eliminates the NGG PAM site on the most frequent normal HTT haplotype in HD, permitting mutant-specific CRISPR/Cas9 therapeutics in a predicted ~20% of HD subjects with European ancestry. Our rs363099-based CRISPR/Cas9 showed perfect allele specificity and good targeting efficiencies in patient-derived cells. Dramatically reduced mutant HTT mRNA and complete loss of mutant protein suggest that our allele-specific CRISPR/Cas9 strategy inactivates mutant HTT through NMD. In addition, GUIDE-Seq analysis and subsequent validation experiments support high levels of on-target gene specificity. Our data demonstrate a significant target population, complete mutant specificity, decent targeting efficiency in patient-derived cells, and minimal off-target effects on protein-coding genes, proving the concept of PAS-based allele-specific NMD-CRISPR/Cas9 and supporting its therapeutic potential in HD.


Assuntos
Doença de Huntington , Alelos , Sistemas CRISPR-Cas , Mutação com Ganho de Função , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/terapia , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , RNA Mensageiro
14.
World Neurosurg ; 166: e109-e117, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35792225

RESUMO

OBJECTIVE: Compared to European, Japanese, and Chinese populations, genetic studies on intracranial aneurysms (IAs) in Koreans are lacking. We conducted an updated genome-wide association study (GWAS) to more accurately identify candidate variations predicting IA by genotype correction and imputation than in the first Korean GWAS. METHODS: We performed a high-throughput imputation of single-nucleotide polymorphisms (SNPs) and genotype missing values for 250 IA and 296 controls. Out of a total of 7,333,746 sites with an imputation R2 score of ≥0.5, 6,105,212 SNPs were analyzed. A high-throughput GWAS was performed after adjusting for clinical variables and 4 principal component analysis values. RESULTS: A total of 39 SNPs reached a significant genome-wide threshold (P < 5 × 10-8). After pruning by pairwise linkage disequilibrium (r2 < 0.8), 11 SNPs were consistently associated with IA. Six tagging SNPs, including rs3120004, rs1851347, rs1522095, rs7779989, rs12935558, rs3826442, and rs2440154, showed strong linkage disequilibrium tower tagging haplotype structures. Among them, rs3120004 tagged a large and strong haplotype structure between LOC440704 and RGS18 genes in 1q31.2 (odds ratio, 2.34; 95% confidence interval, 1.74-3.14; P = 1.4 × 10-8). The rs2440154 (SLC47A1, 17p11.2) SNP increased the risk of IA most significantly (odds ratio, 2.90; 95% confidence interval, 2.07-4.08; P = 8.2 × 10-10). The region encompassing rs3826442 (MYH13, 17p13.1) showed a high recombination rate of approximately 70 cM/Mbp. CONCLUSIONS: Our updated GWAS using high-throughput imputation approaches can be an informative milestone in understanding IA formation via susceptibility loci in this stage before large-scale genome-wide association meta-analysis.


Assuntos
Estudo de Associação Genômica Ampla , Aneurisma Intracraniano , Humanos , Predisposição Genética para Doença/genética , Genótipo , Aneurisma Intracraniano/genética , Polimorfismo de Nucleotídeo Único/genética , República da Coreia/epidemiologia
15.
Exp Dermatol ; 31(11): 1685-1692, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35790027

RESUMO

Recently, a novel hyaluronic acid (HA) filler containing the epidermal growth factor (EGF) was developed. The objective of this study was to evaluate the rheological properties, preclinical efficacy and biocompatibility of the EGF-containing HA filler (HA-EGF filler) using a photoaged mouse model. The rheological properties of the new HA-EGF filler were assessed. Twenty-four female hairless mice (SKH1) underwent photoaging induction with 8 weeks of ultraviolet-B irradiation. The mice were randomly divided into four groups and intradermally injected 100 µl of phosphate-buffered saline, HA-EGF filler, HA filler or polynucleotide (PN) into the dorsal region. We examined the effect of fillers on photoaged skin by dermoscopic examination. Furthermore, histological evaluation with immunohistochemical staining was performed to determine the biocompatibility and collagen formation at the 10th week. A real-time quantitative polymerase chain reaction analysis and western blot test assessed the expression of collagen I/III, matrix metalloproteinases (MMPs) and transforming growth factor. The viscosity and elasticity of the HA-EGF filler were lower than those of the HA filler. Histological evaluation revealed no significant differences in the collagen synthesis between the HA-EGF, HA and PN filler groups. No inflammation was observed during the experimental period. The HA-EGF filler induced type I/III collagen production and downregulated the expression of MMP-1, 3 and 9. Our results suggest that the novel HA-EGF filler may be an additional therapeutic option for photoaged skin, which works by inducing collagen synthesis. Based on these preclinical results, further well-controlled clinical studies are required.


Assuntos
Preenchedores Dérmicos , Envelhecimento da Pele , Feminino , Camundongos , Animais , Ácido Hialurônico/farmacologia , Preenchedores Dérmicos/farmacologia , Fator de Crescimento Epidérmico , Camundongos Pelados , Colágeno Tipo I
16.
PLoS One ; 17(4): e0265581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35427368

RESUMO

Polygenic risk scores (PRSs) have an important relevance to approaches for clinical usage in intracranial aneurysm (IA) patients. Hence, we aimed to develop IA-predicting PRS models including the genetic basis shared with acute ischemic stroke (AIS) in Korean populations. We applied a weighted PRS (wPRS) model based on a previous genome-wide association study (GWAS) of 250 IA patients in a hospital-based multicenter cohort, 222 AIS patients in a validation study, and 296 shared controls. Risk predictability was analyzed by the area under the receiver operating characteristic curve (AUROC). The best-fitting risk models based on wPRSs were stratified into tertiles representing the lowest, middle, and highest risk groups. The weighted PRS, which included 29 GWASs (p < 5×10-8) and two reported genetic variants (p < 0.01), showed a high predictability in IA patients (AUROC = 0.949, 95% CI: 0.933-0.966). This wPRS was significantly validated in AIS patients (AUROC = 0.842, 95% CI: 0.808-0.876; p < 0.001). Two-stage risk models stratified into tertiles showed an increased risk for IA (OR = 691.25, 95% CI: 241.77-1976.35; p = 3.1×10-34; sensitivity/specificity = 0.728/0.963), which was replicated in AIS development (OR = 39.76, 95% CI: 16.91-93.49; p = 3.1×10-17; sensitivity/specificity = 0.284/0.963). A higher wPRS for IA may be associated with an increased risk of AIS in the Korean population. These findings suggest that IA and AIS may have a shared genetic architecture and should be studied further to generate a precision medicine model for use in personalized diagnosis and treatment.


Assuntos
Aneurisma Intracraniano , AVC Isquêmico , Acidente Vascular Cerebral , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Aneurisma Intracraniano/complicações , Aneurisma Intracraniano/genética , Herança Multifatorial/genética , Fatores de Risco , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/genética
17.
Nat Neurosci ; 25(4): 446-457, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379994

RESUMO

The age at onset of motor symptoms in Huntington's disease (HD) is driven by HTT CAG repeat length but modified by other genes. In this study, we used exome sequencing of 683 patients with HD with extremes of onset or phenotype relative to CAG length to identify rare variants associated with clinical effect. We discovered damaging coding variants in candidate modifier genes identified in previous genome-wide association studies associated with altered HD onset or severity. Variants in FAN1 clustered in its DNA-binding and nuclease domains and were associated predominantly with earlier-onset HD. Nuclease activities of purified variants in vitro correlated with residual age at motor onset of HD. Mutating endogenous FAN1 to a nuclease-inactive form in an induced pluripotent stem cell model of HD led to rates of CAG expansion similar to those observed with complete FAN1 knockout. Together, these data implicate FAN1 nuclease activity in slowing somatic repeat expansion and hence onset of HD.


Assuntos
Endodesoxirribonucleases , Exodesoxirribonucleases , Doença de Huntington , Expansão das Repetições de Trinucleotídeos , Idade de Início , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Exoma/genética , Estudo de Associação Genômica Ampla , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/metabolismo , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Sequenciamento do Exoma
18.
Front Aging Neurosci ; 14: 819628, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386117

RESUMO

Background: To assess the association of haptoglobin (Hp) phenotype with neurological and cognitive outcomes in a large cohort of patients with subarachnoid hemorrhage (SAH). Methods: This prospective multicenter study enrolled patients with aneurysmal SAH between May 2015 and September 2020. The Hp phenotype was confirmed via Western blots. The relative intensities of α1 in individuals carrying Hp2-1 were compared with those of albumin. Multivariable logistic and Cox proportional-hazard regression analyses were used to identify the risk factors for 6-month and long-term outcomes, respectively. Results: A total of 336 patients including the phenotypes Hp1-1 (n = 31, 9.2%), Hp2-1 (n = 126, 37.5%), and Hp2-2 (n = 179, 53.3%) were analyzed. The Hp phenotype was closely associated with 6-month outcome (p = 0.001) and cognitive function (p = 0.013), and long-term outcome (p = 0.002) and cognitive function (p < 0.001). Compared with Hp1-1 as the reference value, Hp2-2 significantly increased the risk of 6-month poor outcome (OR: 7.868, 95% CI: 1.764-35.093) and cognitive impairment (OR: 8.056, 95% CI: 1.020-63.616), and long-term poor outcome (HR: 5.802, 95% CI: 1.795-18.754) and cognitive impairment (HR: 7.434, 95% CI: 2.264-24.409). Long-term cognitive impairment based on the Hp phenotype was significantly higher in patients under 65 years of age (p < 0.001) and female gender (p < 0.001). A lower relative α1/albumin intensity (OR: 0.010, 95% CI: 0.000-0.522) was associated with poor outcome at 6 months but not cognitive impairment in patients with SAH expressing Hp2-1. Conclusion: Hp2-2 increased the risk of poor neurological outcomes and cognitive impairment compared with Hp1-1. For Hp2-1, higher relative α1 intensities were related to 6-month favorable outcomes.

19.
Sci Rep ; 12(1): 2717, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177760

RESUMO

In addition to conventional genome-wide association studies (GWAS), a fine-mapping analysis is increasingly used to identify the genetic function of variants associated with disease susceptibilities. Here, we used a fine-mapping approach to evaluate candidate variants based on a previous GWAS involving patients with intracranial aneurysm (IA). A fine-mapping analysis was conducted based on the chromosomal data provided by a GWAS of 250 patients diagnosed with IA and 296 controls using posterior inclusion probability (PIP) and log10 transformed Bayes factor (log10BF). The narrow sense of heritability (h2) explained by each candidate variant was estimated. Subsequent gene expression and functional network analyses of candidate genes were used to calculate transcripts per million (TPM) values. Twenty single-nucleotide polymorphisms (SNPs) surpassed a genome-wide significance threshold for creditable evidence (log10BF > 6.1). Among them, four SNPs, rs75822236 (GBA; log10BF = 15.06), rs112859779 (TCF24; log10BF = 12.12), rs79134766 (OLFML2A; log10BF = 14.92), and rs371331393 (ARHGAP32; log10BF = 20.88) showed a completed PIP value in each chromosomal region, suggesting a higher probability of functional candidate variants associated with IA. On the contrary, these associations were not shown clearly under different replication sets. Our fine-mapping analysis suggested that four functional candidate variants of GBA, TCF24, OLFML2A, and ARHGAP32 were linked to IA susceptibility and pathogenesis. However, this approach could not completely replace replication sets based on large-scale data. Thus, caution is required when interpreting results of fine-mapping analysis.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Aneurisma Intracraniano/genética , Teorema de Bayes , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único , Mapas de Interação de Proteínas
20.
J Clin Neurol ; 18(2): 163-170, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35196751

RESUMO

BACKGROUND AND PURPOSE: Matrix metalloproteinases (MMPs) are expected to play an important role in extracellular matrix (ECM) remodeling in response to hemodynamic stress. We investigated the association between MMPs and intracranial aneurysms (IAs) via a genome-wide association study (GWAS) of IAs. METHODS: A GWAS data set of 250 IAs and 294 controls was used to analyze the genetic link between MMPs and IAs via single-nucleotide polymorphisms (SNPs), MMP gene families, and in silico functional analyses of gene ontology (GO) enrichment and protein-protein interaction (PPI). RESULTS: Forty-eight SNPs and 1 indel out of 342 markers of MMP genes were related to IAs. The rs2425024 SNP located on MMP24 was the most strongly associated with IAs (OR=0.43, CI=0.30-0.61, p=2.4×10-6), suggesting a protective effect. The 16938619 SNP of MMP26 significantly increased the risk of an IA (OR=3.12, 95% CI=1.76-5.50, p=8.85×10-5). Five MMP genes (MMP24, MMP13, MMP2, MMP17, and MMP1) increased the susceptibility to an IA. MMP24 was the gene most closely related to IAs (p=7.96×10-7). GO analysis showed that collagen catabolism was the most-enhanced biological process. Further, metalloendopeptidase activity and ECM were predominantly detected in the cellular component and molecular function, respectively. PPI provided evidence that MMP2, TIMP2 (tissue inhibitor of metalloproteinase 2), and TIMP3 genes constitute a network for predicting IA formation. CONCLUSIONS: The present results provide comprehensive insight into the occurrence of IAs associated with MMPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...